Sex-dependent disposition of acetaminophen sulfate and glucuronide in the in situ perfused mouse liver.
نویسندگان
چکیده
Breast cancer resistance protein (BCRP, ABCG2) is expressed in the hepatic canalicular membrane and mediates biliary excretion of xenobiotics including sulfate and glucuronide metabolites of some compounds. Hepatic Bcrp expression is sex-dependent, with higher expression in male mice. The hypothesis that sex-dependent Bcrp expression influences the hepatobiliary disposition of phase II metabolites was tested in the present study using acetaminophen (APAP) and the generated APAP glucuronide (AG) and sulfate (AS) metabolites in single-pass in situ perfused livers from male and female wild-type and Abcg(-/-) (Bcrp-deficient) mice. Pharmacokinetic modeling was used to estimate parameters governing the hepatobiliary disposition of APAP, AG, and AS. In wild-type mice, the biliary excretion rate constant was 2.5- and 7-fold higher in males than in females for AS and AG, respectively, reflecting male-predominant Bcrp expression. Sex-dependent differences in AG biliary excretion were not observed in Bcrp-deficient mice, and AS biliary excretion was negligible. Interestingly, sex-dependent basolateral excretion of AG (higher in males) and AS (higher in females) was noted in wild-type mice with a similar trend in Bcrp-deficient mouse livers, reflecting an increased rate constant for AG formation in male and AS formation in female mouse livers. In addition, the rate constant for AS basolateral excretion was increased significantly in female mouse livers compared with that in male mouse livers. It is interesting to note that multidrug resistance-associated protein 4 was higher in female than in male mouse livers. In conclusion, sex-dependent differences in conjugation and transporter expression result in profound differences in the hepatobiliary disposition of AG and AS in male and female mouse livers.
منابع مشابه
The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice.
The role of Mrp2, Bcrp, and P-glycoprotein in the biliary excretion of acetaminophen sulfate (AS) and glucuronide (AG), 4-methylumbelliferyl sulfate (4MUS) and glucuronide (4MUG), and harmol sulfate (HS) and glucuronide (HG) was studied in Abcc2(-/-), Abcg2(-/-), and Abcb1a(-/-)/Abcb1b(-/-) mouse livers perfused with the respective parent compounds using a cassette dosing approach. Biliary clea...
متن کاملAltered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR(-) rats.
Previous studies have demonstrated that phenobarbital treatment impairs the biliary excretion of acetaminophen glucuronide (AG), although the transport system(s) responsible for AG excretion into bile has not been identified. Initial studies in rat canalicular liver plasma membrane vesicles indicated that AG uptake was stimulated modestly by ATP, but not by membrane potential, HCO(3)(-), or pH ...
متن کاملSevere diabetes and leptin resistance cause differential hepatic and renal transporter expression in mice
BACKGROUND Type-2 Diabetes is a major health concern in the United States and other Westernized countries, with prevalence increasing yearly. There is a need to better model and predict adverse drug reactions, drug-induced liver injury, and drug efficacy in this population. Because transporters significantly contribute to drug clearance and disposition, it is highly significant to determine whe...
متن کاملAltered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, representing a spectrum of liver pathologies that include simple hepatic steatosis and the more advanced nonalcoholic steatohepatitis (NASH). The current study was conducted to determine whether pediatric NASH also results in altered disposition of acetaminophen (APAP) and its two primary metabolites, APAP-sulfat...
متن کاملHepatic disposition of the acyl glucuronide 1-O-gemfibrozil-beta-D-glucuronide: effects of clofibric acid, acetaminophen, and acetaminophen glucuronide.
Glucuronidation of carboxylic acid compounds results in the formation of electrophilic acyl glucuronides. Because of their polarity, carrier-mediated hepatic transport systems play an important role in determining both intra- and extrahepatic exposure to these reactive conjugates. We have previously shown that the hepatic membrane transport of 1-O-gemfibrozil-beta-D-glucuronide (GG) is carrier-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 37 9 شماره
صفحات -
تاریخ انتشار 2009